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Approximation of Chronopotentiometric Responses by

Orthogonal Collocation

B. Stanley Pons

Present Address: .
Department of Chemistry
University of Alberta
Edmonton, Alberta T6G 2G2

Abstract

High accuracy simulations of chronopotentiometric responses are

demonstrated for several electrochemical mechanisms.

Derivation of the

discretized equations for simple electron transfer and the EC mechanisms
are given. The equations for other mechanisms are tabulated.
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The advantages in using the orthogonal collocation technique for
the simulation of second order partial differential equations de-
scribing electrochemical diffusion problems have been reported(l'z).
The discretized equations have been derived for several electro-

chemical mechanisms under the control of chronoamperometric(1-4)

and cyclic voltammetric(s) programs. This paper presents the
discretized equations necessary to simulate the chronopotentiometric
response for two mechanisms. Extension of the technique to more

complicated mechanistic schemes is shown to be straightforward, and

the appendix contains further examples.

S ol : Definition

[A]l; [B]; etc. Molar concentrations of species A, B, etc.
[A°] Bulk concentration (initial) of species A
;.57 By, g Discretization coefficients (1™

A Electrode area, cm2

B Dt/22

cai Cpi etc. [A)l/[a°]; [Bl1/[A°]; etc.

DA; DB; etc. Diffusion coefficients of species A, B, etc.
D = DA = DB = DC’ etc.

61j Kronecker delta (= 1 if i = j; = 0 if i # j)
E Potential

E° Standard potential

F Faraday

i Current., amperes

Jij Elements of the Jacubian matrix

K Homégennous cquilibrium constant

k Homogernnns rate constant.

n Number of electrons tran:ferred

N Order cf polynomiael used




Symbol Definition

R Gas Constant

T Temperature

T Time, seconds

T Chronopotentiometric transition time

t = T/1

X Perpendicular distance from electrode surface (cm)

x X/2

xq Roots of orthogonal polynomial (Legendre)

4 4 Distance in solution from electrode surface where

diffu§ional effects are negligible during time of
experiment

Simple Reversible Charge Transfer -

A—B | (1)

N This mechanism is considered for the planar diffusion case
where initially only species A is present. At t = 0, a constant
current i is applied to the cell, and the potential-time plot is

recorded, noting the transition time t. The response is given

(6)

analytically by

RT¢
T nF 5 & (2)

E = E°

Although this solution is fully adequate for describing the
responée after corrections for charging, derivation of the discretized
collocation equations will be given so as to exemplify the procedurec
that is followed for developing the approximation of the responses

, of more complicat«d mechanisms.




The diffusion equations and boundary conditions describing this

experiment are

2
§ [A) d€1a}
5T A sx?
2
§ [B) §°[B]
=D ( 4)
5T B 5x2
(al, o = [al, . = [A°] (5)
(Bl, o= [Bl, , =0 ( 6)
D= DA ( 7)
D = Dy ( 8)
§[A) § [B]
DA( 5% )x=o DB( 3 )x=o €9
i= nFADA(é-‘f—;l)x=o (10)
[B]
_ .o _ RT' X=0
E =E oF 1n [A]x=0 (11)

Insertion of the dimensionless variables for concentration,

distance, and time into {(3) and (4) gives

: )52
[A°]6c, DIA®)8%c,

———— - - &2

T &t Zz6x

——— e

. . , 2
[A°)dcy ) D[r°]18%c,

T &t 2% 6%?

.
’




and after simplifying,

The boundary conditions

2

GcA - 86 Cp
st s x>
2
GcB . é Cp
6t 6x2

(14)

(15)

(5)-(7) are treated similarly and become:

cA(i,O) =1

cB(x,O) = 0

Sea) |
6x /x=0

cp(lst) =1

cB(l,t) = 0

(=)

“\&x [x,=0

1l

(16)

(17)

(18)

« The discretization equations for first and second order ordinary

differentials have been given previously

dy(x,t)
dx

a3y ix,t)
dx2

when evaluated at the roots X of an orthogohal polynomial.

computational section.)

X,

1

-
=

N+2
i=1

N+2

Z B,
j=1 1,]

(1)

z Ak,j y(xj,t)

. Y(xjpt)

. and are:

(19)

(20)

(See
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Application of (20) to (14) and (15) at the roots of a Legendre

" polynomial yield

ch N+2
ac X = BjilBl’J CA(XJ,t) (21)
| _ gN37By,y cplxyet) (22)
[ 4
Expanding (21) and (22) partially, we have
ch N+1
3t [x, = BIBj, 16a(0,t) + By yyoCaflst) + _zZBi'ch(xj,;)] (23)
i j=
ch N+1
- = B, ,c,(0,t) + B, c,(1,t) + B, .c,({x.,t 24
Insertion of the boundary conditions (16) and (17) yields
ch N+2
gt |x; = B[y, 0800/8) + By g5 ¥ jﬁlBi,ch"‘j'?” (25)
ch N+2
We need an expression for cA(O,t) and cB(o,t) explicitly. From (20)

applied to the boundary flux condition (18), we have

e

porereem




Now, equation (10) is also made dimensionless as follows. Since:

dc
dfa] = Ia°1[""A
(dx )x=0 T L (;x )x1=0 + we have

L dx /x,=0 L

is= nFAD[A°]<ac§)  nFA[A°]D"8"
1 T

- Combining this expression with (27) and (28), we have

N+1
cA(O,t) =Q - j£2 ach(xj,t)

N+1
cB(olt) = R ~ jﬁz ajcB(xj't-)_

_ 1 ith - A
’
B1,1 { nFa[ac]pYs® 1'N+2]

. b
Y : [ = 5|+ and
1,1 L nFA[A°]D’B

_My

a
I A,

Substitution of (31) and (32) back into (25) and (26), we have




g | ‘ ch N+1
§ gt = I; ¢ B jizbi'jcB(xj,t) + Wwhere (37)
S; = BIB; 19 % By naal (38)
Ti = B Bi,1R ¢ and (39)
bi,j = -Bi,laj + Bi,j (40)

Simultaneous solution of the 2N differential equations by the
integration subroutines described previously give accurate and fast
approximations to the consentration profiles of A and B as a function
of time.

The desired response, potential as a function of time, is given

then by equation (11) in the form

. RT* cB(O,t)
E=E° - {FIn (c'A7—o,t)‘ , (41)

with cB(O,t) and cp(0,t) being supplied at each time integration
step by equations (31) and (32). A comparison of some typical
E-t points from equation (2) and from equation (41) is given in
Table 1, and the simulated plot shown in Figure 1. Only a sixth

& order Legendre polynomial (N = 6) was used. Total computational
time for 1000 E-t points was 0.862 seconds (see Computational sec-

(7)

tion). B may either be determined explicitly , or fixed arbitrariliv

and integrated by splines(z).

ECrev Mechanism

The extension of the mathimaitics to include kinetic reactions




is immediate. Consider (under the same experimental conditions) the

ECrev mechanism:

R L TN 3
e s B

ne .
A__B .
(42)
ky
B —"C
k)
k_y
with K = K v and (43)
1
A= (ky + k_j)t (44) 3
The diffusion-kinetic equations and boundary conditions de- é
scribing the system are:
. s1a) _ 8% (45)
T A ze
8Bl _ o, 8%m1 [B] + k_, [C] (46)
ST B 6X2 1 -1
s[c] s2(c) |
—35— = DC 5 ) + kllB] - k_l[C] (47) P
X
[A]X,O = [A]w,T = 0 [A°] ) (48)
[B]x'o = [B]w,T =0 (49) .
[C?X,O = [Clm'T =0 (50)

§1a] _ (s8]
DA( 5X )x=0 - DB( 5% )x=0 | (51)

2




; 1
: §IC) = i
Dc( §X )x=o 0 (52) )

Introducing the dimensionless parameters for concentration,
time, and distance, the following simplified equations are readily

obtained:

Sc §°c
¢ BopR (53)
{ §t 6x
GcB Gch -1
=g - A (1+K) " (c,-KcL.) (54)
st 6x2 B ¢
6cc , 62cc -1
= B + A (14+K) “(c_-Kc,.) (55)
ét 6x2 B ¢
cA(x,O) = cp(l,t) =1 (56) 1
cB(x,O) = cB(l,t) = 0 (57)
cc(x,O) = cc(l,t) =0 (58)

(::A)x =0 - _(ziB)x =0 (59)
1 1

Gcc ‘
Sx xl=0 =0 (60)

Equations (53)-(55) arec discretized by equation (20) toc yield,
after partial exparsion and substitution of boundary condition

(56)~(58),

ch(t) N+1.
—r X = (—:[Bj’]t-l\(o.t) + By en t jﬁysij%"‘i't” (61)




t
i
ki
o4

s . 5. i ks it D B B e

= 8[B, (0,t) + T B, .c.(x, ,t)] -

llB 3-21'38 J

A(1+K) 1 cp(x;st) = Keg(x;,t))

de, (t) N+1
—gt |x, = BIB;,16:(0.t) + I By scolxy,t)] +
i j=2'

A(1+x)"1[c8(xi,t) - Keg(x;,t)] (63)

The flux relation (59) is identical to the simple reversible charge
transfer case, and is discretized in precisely the same manner to

yield equations (31) and (32). The flux relation for species ¢ is

equation (60), and is discretized as

Gcc N+2
3% Jx=0 = 0 % jilAl,J c(*jet)

N+1

1, N+2S (1 t) + I Al .C (x :t) (65)

o,t) + A
(0,t) oM, 5%

1 1%¢

N+1
(0,t) + T A

(x ) (66)
j=2 1,j “c

Ay 1%

N+1
cC(O,t) = j£2ajcc(xj.t) (67)

Substitution of (31), (32) and (67) into (61), (62), and (63) gives




ch N+1 i
to|x; =T, + Bjizbi'jcB(xj.#) = A(1+K) T[ cp(x;,t)-Keo(x;,t)] (69)
dc, N+1 N
a |x; - Bjﬁzbi,jcc‘xj't) + A (1+K) T leg (%4 t) =Kep (x /) ] (70)

Again, simultaneous solution of equations (68)-(70) provide
the time dependent concentration profiles. The chronopotentiometric
response for this mechanism is still given by equation (41) with
the term in parentheses being supplied by equations (31) and (32).
The concentration terms in (31) and (32) however, are now calculated
numerically from equations (68)-(70).

The results of the simulation of this mechanism was compared

to the response given by the analytic solution(s)

| N, -1
£ opge o REL__T0 o RT'ln[ 1, _nig Srflte+k )T ]] (71)
et PEUaek 0 2(14K)  (kp+k_p) 1

The comparison of the two solutions shows that the simulated
results are easily maintained within a relative error of 0.01%
when B is chosen by the method described by Rieker and Speiser(7).
Simulations for more complicated mechanisms are formulated
simply by the same procedures used to arrive at equations (68)-(70).

Under similar boundary conditions, the results are quite easily

obtained.

Computational

Al]l simulations were performed on the Amdahl 470V7 computer at

the University of Alberta. The main integration subroutine for the

system of coupled first order ordinary differential equations

bl s Koot ol e




((36)-(37) or (68)-(70)) was the same third order semi-implicit y

' Runge-Kutta method as described previously(Z) for "stiff" equations. !
The subroutine is very general in usage, and calls three external
subroutines furnished by the user‘s): the first supplies the algorithm
i3 for the right hand side of the time derivatives of each concen-
tration term (equations (36)-(37) or (68)-(70)), the second is a.
simple output routine for displaying the results and is called
automatically, and the third is a user supplied matrix of the

Jacobian of equations (36)-(37) or (68)-(69), necessary during the

integration.

The elements of the Jacobian matrix are simply the derivatives
of equations (36)-(37) or (68)-(70) with respect to each xj. The
%i matrix elements of the Jacobian for the simple reversible electron

transfer mechanism then are given by:

\ s fdcatt) . 1
Ji,j = Ix\at «. for species A (72)
J 1 |
and ' i
s ch(t) . f

These are given explicitly by: {

- .6
Ji,j ll cvae S; + I b, .c,(x.,t) (74)

3 i=2

[l

for species A, and

N+1

8

for spcciees B, or finally,

!
i
!
. L




(76)

-B, ,A
e V5w V5 AP
4

= ¢
1,5 7 Pi,j L i

for both species.

Similarily, the matrix elements of the Jacobian for the ECrev

mechanism are given by:

J, . = equation (76) (77)
i,J
for species A, and
Je . = Piafy L, L AR (1+K) “Ye_ (x, ,t)8 (78)
1,3 A1 i3 B*17%)%4;

for species B, where sij is the Kronecker delta, and

-B, A, .
J ‘=-_}-,_l-l_'l+8i
’

1'J Al'l

-1
j AK(1+K) cC(xifF)sij (79)

B for species C.
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v Table 1

é E/volts, E/volts
: Time/s simulated exact
0.0023 0.0771 0.0771
0.0107 0.0556 0.0556
0.0418 0.0351 0.0351
0.1188 0.0167 ‘ 0.0167 ]
0.3358 -0.0048 ' -0.0048 '
0.5055 -0.0227 -0.0227
0.9100 -0.0752 -0.0752
0.9940 -0.1241 ~0.1240

Comparison of simulated results with exact A
(equation 2) for simple reversible charge
transfer. i = 0.269 ma, 1t = 1.010 s, D =
10-5 cm2/sec, [A°) =1 x 10-6 mole/cm3,
© P = 25°C, A = 1.000 cm?, linear diffusion,
. quiet solution, E° = 0.000 V.




ar

Figure 1: Calcomp digital plot of simulated chronopotentiogram

for simple reversible charge transfer mechanism. See

Table 1 for experimental parameters.
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Appendix

Listed below are the discretized equations for several other
commonly occurring electrochemical mechanisms. As above, it is
assumed that the diffusion is to a planar electrode in quiet

solution, and species A is the only electroactive species present

initially.

Catalytic Mechanism

ne k
A—™B —>A+C (80)

ch N+1 :

I x, = si + Bjizbi)jcB(xj't) - chB(xj,t) (81)
5
: ch N+1
i IT xi = Ti + Bjﬁzbi'jcB(xj,t) - ktcB(xj,t) (82)
¥
i

For the E-t profile, equation (11) is used along with equations
(31) and (32), the unknown concentration terms being furnished by |

the simultaneous solution of the 2N equations (81) and (82).

Dimerization

(83)

We let

A =" (IA°]k, + k_,)T, and (84)

k_y ,




H
:

Then
ch N+1
I = s; + B I bx,ch(xj't)
j=2
dcg N+1 -1 2
I = Ti + BjizblchB(xJ't) = A (14K) (cB(xi,t) - ch(xi,t))
dcc N+1 -1 2
I = Bjizbi 3 c(x t) + M (1+K) (HcB(xi,t) - ch(xi,t))

Once more, equations (11), (31), and (32) are used for the E-t
profiles. Note that in this case, 3N equations must be solved

because cB(O,t) depends on the concentration of the C species.

Second Order Reaction

A and K are defined as in equations (84) and (85).

dc, N+1 -1
I = 8; + BJEZb i,j A(x t) = A (1+K) (cA(xi't)cB(xi't) -

ch(xi,t))

dc N+1 -1
ac “T; * BjLzb '3 (xj.t) - A {1+K) (CA(xi’t)CB(xi't) -

ch(xj It))

(86)

(87)

(88)

(89)

(0)

(91)




. -1
=8 I bi,jcc(xj,t) + A (1+K) (cA(xi't)cs(xi't) - ch(xi,t)) (92)
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